PAPER ID: 1138 Presenter: Henrik Kudsk

Large SEPR and COP improvement obtained by controlling an ultra-lowcharge DX chiller using a vapor quality sensor

Simplified diagram

- Equipped with both
 - Superheat control
 - Vapor quality control
- 100 kW chiller 7/12°C
- 4 kg Ammonia
- Tested at Hochschule Karlsruhe, Germany
- Designed by Fischer Kälte, Germany

ECOdesign and SEPR requirements

(Seasonal Energy Performance Ratio)

ECOdesign

(EC directive)

SEPR process chillers SEER comfort chillers SCOP heat pumps

High temperature process chillers	From 01/2018	From 01/2021
	SEPR 12/7"	SEPR 12/7"
Air cooled < 400 kW	4,5	5,00
Air cooled 400 to 2000 kW	5,00	5,50
Water cooled < 400 kW	6,50	(7,00)
Water cooled 400 to 1500 kW	7,50	8,00
Water cooled 1500 to 2000 kW	8,00	8,5

Measured values for ammonia-based chiller					
	SEPR	Full load COP	Part load COP	Unit	Yearly energy consumption
Superheat 8K control	5.6	3.9	6.9	kW/kW	91.086 kWh
Vapor Quality control	8.2	4.7	10.5	kW/kW	63.140 kWh
Improvement	46	21	51	%	27.946 kWh

HB Products

WE INCREASE UPTIME,

SAFETY ANDHEFFICIENCY

SEPR improvement on DX chiller

(Seasonal Energy Performance Ratio)

	SEPR	Point A	Point B	Point C	Point D
Outdoor temp °C		30	23	16	9
Load %		100	93	87	80
Cooling capacity		76	72	66	61
Superheat 8K control					
Power consumption		20	15	11	9
Superheat 8K control					
СОР	5.6	3.9	4.7	5.9	6.9
Superheat 8K control					
Cooling capacity		79	65	61	56
Vapor Quality control					
Power consumption		17	11	8	6
Vapor Quality control					
СОР	8.2	4.7	6.1	8.2	10.5
Vapor Quality control					
Improvement	46	21	30	39	51

	- 19 - I	N
1	-19	0.08
- 2	-18	0.41
3	.12	0.05
-	-16	1.45
	.15	1.24
	-1.0	1.00
	120	3,35
1	-14	4,79
-	-12	5.49
	-11	8,94
10	-10	11.01
11	- 2	17,29
12	-8	20,09
13	17	28,73
1.4		39,73
15	- 5	56.68
16	-4	76,36
17	2	105.07
18		155.22
19	4	309.41
26		242.06
10		2017/00
2.3		204040
		10,0,0,0
23	3	300.61
28	4	333,73
- 25	5	336,48
36	6	150,48
27	7	363,48
21	8	368,91
29	- 9	101.63
3.0	10	107.30
10	11	108 53
10	13	104.41
20	10	000.00
2.4		200,000
- 29	14	384,40
35	15	390,45
34	18	344,96
30	12	108,03
36	18	365,36
39	19	261,87
40	30	223,90
40	23	196,31
40	32	168,04
43	23	141.70
43	3.6	121.00
14	10	180.00
10		1 area (1991)
100	48	46,17
40	17	71.54
48	- 28	56,57
48	29	43,35
50	30	31.02
- 23	33	20,35
52	3.2	11,15
80	3.3	8,37
- 54	34	3.03
- 58	- 35	2,89
	14	1.21
1.1	37	
27	2.4	3.638
1.12	10	9,40

HB Products WE INCREASE UPTIME, SAFETY AND^{HE}FFICIENCY

Heat transfer optimization

Superheat control Vapor quality control

Vapor quality measurement principle

WE INCREASE UPTIME,

SAFETY AND ÉFFICIENCY

HB Products

Why is vapor quality control better?

- Faster control loop compared to superheat control
- Superheat is reduced to a minimum
- Increased evaporator capacity
- Reduced pressure loss

Cost saving and CO2 reduction

- Considerable annual electricity cost saving
- CO2 saving will depend on the energy source used for electricity generation

	Annual energy consumption	Annual electricity cost EU	Annual CO2 emission EU
Superheat 8K control	91,086 kWh	10,930€	27 tons
Vapor Quality control	63,140 kWh	7,577€	19 tons
Improvement	27,946 kWh	3,353€	8 tons

Similar savings in complete cold store

- The bar graph shows the daily energy consumption of the Halchiu plant in Romania.
- Here vapor quality control, replaced superheat control in September 2020.
- The total energy consumption for the refrigeration system was reduced by 43%.
- Annual saving 383 MWh and 110 T CO₂

HB Products

WE INCREASE UPTIME.

SAFETY AND EFFICIENCY

Thank you for your attention

The test unit will now be installed in Aarhus Denmark, where it will be used for demonstration and further test

More information is available on www.hbproducts.dk Questions can be sent to hk@hbproduct.dk

