AEC
Advanced Evaporator Control - MODBUS

What to gain by controlling the evaporator by HB!

• Zero superheat control
• For Semi Flooded evaporator operation, it ensures optimal heat transfer at all loads
• Increased evaporation temperature & suction pressure
• Lower discharge temperature
• Optimal performance in all climates
• Compressor protection

Demand Defrost Control
Measuring Ice Thickness

Savings:
Energy.............>20%
Installation......>30%
Maintenance....>30%

Zero Super-Heat Control
Measuring Vapor Dryness

How do HB controlling the evaporator today

HB Sensors interface

AEC Modbus
What to gain by controlling the evaporator by HB!

- Zero superheat control
- For Semi Flooded evaporator operation, it ensures optimal heat transfer at all loads
- Increased evaporation temperature & suction pressure
- Lower discharge temperature
- Optimal performance in all climates
- Compressor protection

Savings:
- Energy>20%
- Installation>30%
- Maintenance>30%
What to gain by controlling the evaporator by HB!

- Zero superheat control
- Semi Flooded evaporator operation ensures optimal heat transfer at all loads
- Increased evaporation temperature & suction pressure
- Lower discharge temperature
- Optimal performance in all climates
- Compressor protection

Savings:
Energy............>20%
Installation......>30%
Maintenance....>30%
Evaporator products for optimization

- HBX Sensor
- Defrost Sensor
HBX Sensor

- Measures vapor quality in refrigeration systems – measures the relationship between gas and liquid (Refrigerant h Log P diagram).

- The vapor quality sensor allows for the operation of DX ammonia technology with minimal "superheat".

- The vapor quality sensor ensures a dry suction pipe from the freezer, which minimizes loss of pressure in risers, and it provides increased flexibility of the pipe installation.

- Semi Flooded evaporator operation ensures optimal heat transfer at all loads

- Optimizes at any given load
 - Big savings on full load
 - Even bigger savings at partial load
• Defrost starts only when needed (on demand)

• Stop the defrost when ice is melted (input from temperature sensor located on evaporator surface)

• Save energy compared with timer based defrosting

• Gain more capacity - fewer and shorter defrost cycles

• Easy installation - also on existing sites

• Also available for Heat Pump- and -60°C applications
HB Products

Advanced Evaporator Control - MODBUS

What to gain by controlling the evaporator by HB!

- Zero superheat control
- For Semi Flooded evaporator operation, it ensures optimal heat transfer at all loads
- Increased evaporation temperature & suction pressure
- Lower discharge temperature
- Optimal performance in all climates
- Compressor protection

Demand Defrost Control
Measuring Ice Thickness

Zero Super-Heat Control
Measuring Vapor Dryness

Savings:
Energy >20%
Installation >30%
Maintenance >30%

How do HB controlling the evaporator today?

HB Sensors interface

AEC Modbus

Savings:
Energy >20%
Installation >30%
Maintenance >30%
Sensors output:
• mA output
• Digital output

Sensors input:
• USB cable interfacing to PC

PC Tool:
• HBP configuration tool

Configuration of the sensors:
• It's done locally, where temperature at -30 °C
• Height up 10 meters
• These conditioning can make it inconvenient for changing parameters during start up
• Remotely access to the sensors

• Access without interrupting the running process of the sensor

• Sensors still needs to control expansions valve directly

• Same configuration parameters as offered by HBP tool

• Configuration is done remotely, independent of environment condition

How to achieve this interfacing to HB sensors?

By the AEC module!
AEC:

- Savings on the installation
- More user friendly - all setup is done in the control room
- Independent of location

Savings:
Energy.............>20%
Installation......>30%
Maintenance.....>30%
AEC
Advanced Evaporator Control - MODBUS

What to gain by controlling the evaporator by HB!

- Zero superheat control
- For Semi Flooded evaporator operation, it ensures optimal heat transfer at all loads
- Increased evaporation temperature & suction pressure
- Lower discharge temperature
- Optimal performance in all climates
- Compressor protection

Demand Defrost Control
Measuring Ice Thickness

Savings:
Energy............>20%
Installation......>30%
Maintenance....>30%

How do HB controlling the evaporator today

HB Sensors interface

AEC Modbus

Zero Super-Heat Control
Measuring Vapor Dryness

Elongated diagram showing various components and sensors connected with labeled streams for suction and other process flows.
THE NEXT BIG THING IN REFRIGERATION

CO₂...NH₃...PROPANE...HFO...HFC

ZERO SUPER-HEAT CONTROL

SAVING >30%

SAVING >15%

Defrost on Demand
HBDF sensor

ONLY DEFROST WHEN NEEDED

AEC Advanced Evaporator Control
RS485/MOD-BUS

Evaporator Load
Flow sensor measurement
Refrigerant temperature measurement

Defrost-Control
Relay Box
5 x Relay output

Expansion Valve

1. 4-20mA, modulating
2. Stepper-motor
3. PWM, (pulse modulating valve)

Temp. Inlet
Temp. Outlet

Evaporator Air/liquid temperature ΔT IN/OUT

MOD-BUS

Temp. Inlet
Temp. Outlet

Evaporator data:
Performance kW/COP

Future evaporator control: AEC controls the refrigerant phase according to the load and ensures maximum heat transfer and thus highest possible evaporating pressure at any given load.

WE INCREASE UPTIME AND EFFICIENCY IN THE REFRIGERATION INDUSTRY
THE NEXT BIG THING IN REFRIGERATION

CO₂…NH₃….PROPANE….HFO….HFC

Vapor Quality
HBX sensor "X"

Start/Stop
Master Control

Evaporator Load
Flow sensor
measurement

Refrigerant
temperature
measurement

SAVING
>30%

SAVING
>30%

SAVING
>15%

Defrost on Demand
HBDF sensor

ONLY DEFROST WHEN NEEDED

AEC
Advanced Evaporator Control
RS485/MOD-BUS

Evaporator
Air/liquid temperature
ΔT IN/OUT

Defrost-Control
Relay Box
5 x Relay output

Expansion Valve

1. 4-20mA, modulating
2. Stepper-motor
3. PWM,
(pulse modulating valve)

MOD-BUS

Evaporator data:
Performance
kW/COP

HB Products
WE INCREASE UPTIME AND EFFICIENCY IN THE REFRIGERATION INDUSTRY

Future evaporator control: AEC controls the refrigerant phase according to the load and ensures maximum heat transfer and thus highest possible evaporating pressure at any given load.
THE NEXT BIG THING IN REFRIGERATION

CO₂...NH₃...PROPANE...HFO...HFC

Vapor Quality
Start/Stop
HBX sensor "X"

Evaporator Load Flow sensor measurement
Refrigerant temperature measurement

SAVING
>30%

SAVING
>15%

Defrost on Demand HBDF sensor

ONLY DEFROST WHEN NEEDED

Advanced Evaporator Control
RS485/MOD-BUS

Defrost-Control Relay Box 5 x Relay output
Expansion Valve

1. 4-20mA, modulating
2. Stepper-motor
3. PWM, (pulse modulating valve)

Evaporator data:
Performance kW/COP

Evaporator Air/liquid temperature ΔT IN/OUT

Temp. Inlet
Temp. Outlet

MOD-BUS

WE INCREASE UPTIME AND EFFICIENCY IN THE REFRIGERATION INDUSTRY

Future evaporator control: AEC controls the refrigerant phase according to the load and ensures maximum heat transfer and thus highest possible evaporating pressure at any given load.
THE NEXT BIG THING IN REFRIGERATION

CO₂...NH₃...PROPANE...HFO...HFC

ZERO SUPER-HEAT CONTROL

SAVING >30%

SAVING >15%

DEFROST ON DEMAND HBDF SENSOR

ONLY DEFROST WHEN NEEDED

MOD-BUS

WE INCREASE UPTIME AND EFFICIENCY IN THE REFRIGERATION INDUSTRY

CO₂...NH₃...PROPANE...HFO...HFC

START/STOP HBX SENSOR "X"

VAPOR QUALITY

Evaporator Load Flow sensor measurement

Refrigerant temperature measurement

SAVING >30%

SEMI FLOODED OPERATION

Evaporator Air/liquid temperature ΔT IN/OUT

Defrost-Control Relay Box 5 x Relay output

Expansion Valve

1. 4-20mA, modulating
2. Stepper-motor
3. PWM, (pulse modulating valve)

Evaporator data: Performance kW/COP

MOD-BUS

Future evaporator control: AEC controls the refrigerant phase according to the load and ensures maximum heat transfer and thus highest possible evaporating pressure at any given load.

HB Products
THE NEXT BIG THING IN REFRIGERATION

CO₂…NH₃…PROPANE…HFO…HFC

ZERO SUPER-HEAT CONTROL

SAVING

>30%

SAVING

>15%

Defrost on Demand
HBDF sensor

SAVING

>30%

Only Defrost When Needed

AEC
Advanced Evaporator Control
RS485/MOD-BUS

Evaporator
Air/liquid temperature
ΔT IN/OUT

Evaporator data:
Performance
kW/COP

Mod-Bus
Defrost-Control
Relay Box
5 x Relay output

Expansion Valve

1. 4-20mA, modulating
2. Stepper motor
3. PWM, (pulse modulating valve)

HB Products
WE INCREASE UPTIME AND EFFICIENCY IN THE REFRIGERATION INDUSTRY

Future evaporator control: AEC controls the refrigerant phase according to the load and ensures maximum heat transfer and thus highest possible evaporating pressure at any given load.
THE NEXT BIG THING IN REFRIGERATION

- CO2, NH3, PROPA...E, HFO, HFC

ZERO SUPER-HEAT CONTROL

- SAVING >30%

SEMI FLOODED OPERATION

AEC Advanced Evaporator Control

RS485/MOD-BUS

- Defrost on Demand: HBDF sensor
- Start/Stop: HBX sensor "X"
- Vapor Quality: Flow sensor measurement
- Evaporator Load: Temperature measurement

ONLY DEFROST WHEN NEEDED

- MOD-BUS 1: 4-20mA, modulating
- 2: Stepper-motor
- 3: PWM (pulse modulating valve)

Evaporator data:
- Performance kW/COP
- Evaporator Air/liquid temperature ΔT IN/OUT

Future evaporator control: AEC controls the refrigerant phase according to the load and ensures maximum heat transfer and thus highest possible evaporating pressure at any given load.
THE NEXT BIG THING IN REFRIGERATION

CO2...NH3...PROPANE...HFO...HFC

ZERO SUPER-HEAT CONTROL

SALVING >30%

SALVING >30%

SALVING >15%

ONLY DEFROST WHEN NEEDED

Advanced Evaporator Control
RS485/MOD-BUS

AEC

Evaporator Load Flow sensor measurement
Refrigerant temperature measurement

Temp. Inlet
Temp. Outlet

Evaporator Air/liquid temperature ΔT IN/OUT

MOD-BUS

Defrost-Control Relay Box
5 x Relay output

Expansion Valve

1. 4-20mA, modulating
2. Stepper-motor
3. PWM, (pulse modulating valve)

Defrost on Demand HBDF sensor

Start/Stop Master Control

"X" Batch Freezing Remote input

HB Products WE INCREASE UPTIME AND EFFICIENCY IN THE REFRIGERATION INDUSTRY

Future evaporator control: AEC controls the refrigerant phase according to the load and ensures maximum heat transfer and thus highest possible evaporating pressure at any given load.
THE NEXT BIG THING IN REFRIGERATION

CO2...NH3...PROPANE...HFO...HFC

ZERO SUPER-HEAT CONTROL

SAVING >30%

SAVING >15%

ONLY DEFROST WHEN NEEDED

AEC
Advanced Evaporator Control
RS485/MOD-BUS

Defrost on Demand
HBDF sensor

Start/Stop
Master Control

Vapor Quality
HBX sensor “X”

Evaporator Load Flow sensor measurement
Refrigerant temperature measurement

SAVING

Temp. Inlet
Temp. Outlet

Evaporator Air/liquid temperature ΔT IN/OUT

Defrost-Control
Relay Box
5 x Relay output

Expansion Valve

1. 4-20mA, modulating
2. Stepper-motor
3. PWM, (pulse modulating valve)

MOD-BUS

Evaporator data:
Performance kW/COP

HB Products
WE INCREASE UPTIME AND EFFICIENCY IN THE REFRIGERATION INDUSTRY

Future evaporator control: AEC controls the refrigerant phase according to the load and ensures maximum heat transfer and thus highest possible evaporating pressure at any given load.
THE NEXT BIG THING IN REFRIGERATION

"X" Batch Freezing Remote input

Start/Stop Master Control

Vapor Quality HBX sensor "X"

Evaporator Load Flow sensor measurement
Refrigerant temperature measurement

SAVING >30%

CO₂...NH₃...PROPANE...HFO...HFC

ZERO SUPER-HEAT CONTROL

SAVING >30%

SEMI FLOODED OPERATION

Defrost on Demand HBDF sensor

SAVING >15%

ONLY DEFROST WHEN NEEDED

AEC Advanced Evaporator Control
RS485/MOD-BUS

Evaporator data: Performance kW/COP

MOD-BUS

Temp. Inlet

Temp. Outlet

Defrost-Control Relay Box 5 x Relay output

1. 4-20mA, modulating
2. Stepper-motor
3. PWM, (pulse modulating valve)

Expansion Valve

Evaporator Air/liquid temperature ΔT IN/OUT

MOD-BUS

Future evaporator control: AEC controls the refrigerant phase according to the load and ensures maximum heat transfer and thus highest possible evaporating pressure at any given load.

WE INCREASE UPTIME AND EFFICIENCY IN THE REFRIGERATION INDUSTRY
Thank you for your attention
Any questions?

- Ideas, expectations creates tomorrows innovation for optimization
There is no planet B
think green and save the Earth

USE

- HB sensor solutions to optimize the efficiency
- Natural refrigerants
<table>
<thead>
<tr>
<th>Time</th>
<th>Day 1</th>
<th>Program, Day 2</th>
<th>Program, Day 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tuesday October 16 2018</td>
<td>Wednesday October 17 2018</td>
<td>Thursday October 18 2018</td>
</tr>
<tr>
<td>10.30</td>
<td>HB Products</td>
<td>HB Products</td>
<td>Scantec Refrigeration Technologies PTY LTD</td>
</tr>
<tr>
<td></td>
<td>Claus Munkholm</td>
<td>Martin Mozart</td>
<td>Stefan Jensen</td>
</tr>
<tr>
<td></td>
<td>Title:</td>
<td>Title:</td>
<td>Title:</td>
</tr>
<tr>
<td></td>
<td>"Defrost on demand, HBDF</td>
<td>Advanced Evaporator Control,</td>
<td>"High Performance Energy with Low</td>
</tr>
<tr>
<td></td>
<td>How to optimize defrosting cycles and</td>
<td>MOD-BUS with HBX & HBDF sensors</td>
<td>Charge NH₃ Systems"</td>
</tr>
<tr>
<td></td>
<td>intervals and obtain big savings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.30</td>
<td>HB Products</td>
<td>EKA, specialized in CO₂ technology</td>
<td>Hochschule Karlsruhe</td>
</tr>
<tr>
<td></td>
<td>Michael Elström</td>
<td>Jörgen Rogstam</td>
<td>Oliver Kacic</td>
</tr>
<tr>
<td></td>
<td>Title:</td>
<td>Title:</td>
<td>Title:</td>
</tr>
<tr>
<td></td>
<td>New sensor technology optimizes</td>
<td>Practical aspects of low superheat</td>
<td>Bachelor thesis, efficiency analysis</td>
</tr>
<tr>
<td></td>
<td>evaporator performance especially</td>
<td>control and experimental test of a CO₂</td>
<td>of a DX R717 refrigeration system with</td>
</tr>
<tr>
<td></td>
<td>during part load on both DX, flooded</td>
<td>Systems.</td>
<td>Vapor Quality Sensor in comparison to</td>
</tr>
<tr>
<td></td>
<td>and pump circulation systems.</td>
<td></td>
<td>Superheat control.</td>
</tr>
<tr>
<td>13.30</td>
<td>HB Products</td>
<td>HB Products</td>
<td>Hochschule Karlsruhe</td>
</tr>
<tr>
<td></td>
<td>Martin Mozart</td>
<td>Michael Elström</td>
<td>Oliver Kacic</td>
</tr>
<tr>
<td></td>
<td>Title:</td>
<td>Title:</td>
<td>Title:</td>
</tr>
<tr>
<td></td>
<td>Advanced Evaporator Control,</td>
<td>New sensor technology optimizes evaporator</td>
<td>Bachelor thesis, efficiency analysis</td>
</tr>
<tr>
<td></td>
<td>MOD-BUS with HBX & HBDF sensors</td>
<td>performance especially during part load on both</td>
<td>of a DX R717 refrigeration system with</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DX, flooded and pump circulation systems.</td>
<td>Vapor Quality Sensor in comparison to</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Superheat control.</td>
</tr>
<tr>
<td>15.00</td>
<td>Scantec Refrigeration Technologies PTY Ltd</td>
<td>HB Products</td>
<td>HB Products</td>
</tr>
<tr>
<td></td>
<td>Stefan Jensen</td>
<td>Claus Munkholm</td>
<td>Michael Elström</td>
</tr>
<tr>
<td></td>
<td>Title:</td>
<td>Title:</td>
<td>Title:</td>
</tr>
<tr>
<td></td>
<td>"High Performance Energy with Low Charge</td>
<td>"Defrost on demand, HBDF</td>
<td>New sensor technology optimizes evaporator</td>
</tr>
<tr>
<td></td>
<td>NH₃ Systems"</td>
<td>How to optimize defrosting cycles and intervals</td>
<td>performance especially during part load on both DX,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>and obtain big savings</td>
<td>flooded and pump circulation systems.</td>
</tr>
</tbody>
</table>